Inner-sphere vs. outer-sphere reduction of uranyl supported by a redox-active, donor-expanded dipyrrin.

نویسندگان

  • James R Pankhurst
  • Nicola L Bell
  • Markus Zegke
  • Lucy N Platts
  • Carlos Alvarez Lamfsus
  • Laurent Maron
  • Louise S Natrajan
  • Stephen Sproules
  • Polly L Arnold
  • Jason B Love
چکیده

The uranyl(vi) complex UO2Cl(L) of the redox-active, acyclic diimino-dipyrrin anion, L- is reported and its reaction with inner- and outer-sphere reductants studied. Voltammetric, EPR-spectroscopic and X-ray crystallographic studies show that chemical reduction by the outer-sphere reagent CoCp2 initially reduces the ligand to a dipyrrin radical, and imply that a second equivalent of CoCp2 reduces the U(vi) centre to form U(v). Cyclic voltammetry indicates that further outer-sphere reduction to form the putative U(iv) trianion only occurs at strongly cathodic potentials. The initial reduction of the dipyrrin ligand is supported by emission spectra, X-ray crystallography, and DFT; the latter also shows that these outer-sphere reactions are exergonic and proceed through sequential, one-electron steps. Reduction by the inner-sphere reductant [TiCp2Cl]2 is also likely to result in ligand reduction in the first instance but, in contrast to the outer-sphere case, reduction of the uranium centre becomes much more favoured, allowing the formation of a crystallographically characterised, doubly-titanated U(iv) complex. In the case of inner-sphere reduction only, ligand-to-metal electron-transfer is thermodynamically driven by coordination of Lewis-acidic Ti(iv) to the uranyl oxo, and is energetically preferable over the disproportionation of U(v). Overall, the involvement of the redox-active dipyrrin ligand in the reduction chemistry of UO2Cl(L) is inherent to both inner- and outer-sphere reduction mechanisms, providing a new route to accessing a variety of U(vi), U(v), and U(iv) complexes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steric Control of Electron Transfer. Changeover from Outer-Sphere to Inner-Sphere Mechanisms in Arene/Quinone Redox Pairs

The various aromatic hydrocarbons (Chart 2) constitute a sharply graded series of sterically encumbered (unhindered, partially hindered, and heavily hindered) donors in electron transfer (ET) to quinones (Chart 1). As such, steric effects provide the quantitative basis to modulate (and differentiate) outer-sphere and inner-sphere pathways provided by matched pairs of hindered and unhindered don...

متن کامل

Electro-magneto-thermo-mechanical Behaviors of a Radially Polarized FGPM Thick Hollow Sphere

In this study an analytical method is developed to obtain the response of electro-magneto-thermo-elastic stress and perturbation of a magnetic field vector for a thick-walled spherical functionally graded piezoelectric material (FGPM). The hollow sphere, which is placed in a uniform magnetic field, is subjected to a temperature gradient, inner and outer pressures and a constant electric potenti...

متن کامل

Outer-sphere effects on reduction potentials of copper sites in proteins: the curious case of high potential type 2 C112D/M121E Pseudomonas aeruginosa azurin.

Redox and spectroscopic (electronic absorption, multifrequency electron paramagnetic resonance (EPR), and X-ray absorption) properties together with X-ray crystal structures are reported for the type 2 Cu(II) C112D/M121E variant of Pseudomonas aeruginosa azurin. The results suggest that Cu(II) is constrained from interaction with the proximal glutamate; this structural frustration implies a "ra...

متن کامل

Chlorine dioxide reduction by aqueous iron(II) through outer-sphere and inner-sphere electron-transfer pathways.

The reduction of ClO(2) to ClO(2)(-) by aqueous iron(II) in 0.5 M HClO(4) proceeds by both outer-sphere (86%) and inner-sphere (14%) electron-transfer pathways. The second-order rate constant for the outer-sphere reaction is 1.3 x 10(6) M(-1) s(-1). The inner-sphere electron-transfer reaction takes place via the formation of FeClO(2)(2+) that is observed as an intermediate. The rate constant fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical science

دوره 8 1  شماره 

صفحات  -

تاریخ انتشار 2017